Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0364920160410020155
Journal of Radiation Protection and Research
2016 Volume.41 No. 2 p.155 ~ p.159
Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments
Riyana Eka Sapta

Suda Shoya
Ishibashi Kenji
Matsuura Hideaki
Katakura Junichi
Abstract
Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core.

Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% 235U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library.

Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. 241Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate

Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.
KEYWORD
Pressurized Water Reactor (PWR), Low energy antielectron neutrino spectra, MVP-BURN
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)